Hacia Ciudades Competitivas Bajas en Carbono
En la presente publicación

Director de Proyecto
Adriana De Almeida Lobo
Directora Ejecutiva

Comité Interno de Revisión
Cambio Climático y Calidad del Aire
Hilda Martínez Salgado
Gabriela Niño
Investigación y Desarrollo
David L. Urián Cruz
Amílcar López Zapata
Ricardo Fernández Gómez
Planeación de Sistemas de Transporte
Sebastián Varela Contador
Comunicación
Salvador Milla Jiménez

Director Ejecutivo Adjunto
Salvador Herrera Montas

Coordinación de Análisis en Política Pública y Desarrollo Urbano
Alejandra Rangel Smith
Gerente de Movilidad y Desarrollo Urbano

Coordinación Editorial
Angélica María Vasga R.
Gerente de Comunicación
Editor

Coordinadora de Política Pública y Desarrollo Urbano
Alejandra Acosta Herazo

Diseño y Concepto Gráfico
Ximena Ocampo Aguilar
Diseñadora Urbana

Gerente de Proyecto
Adriana de Almeida Lobo
Directora Ejecutiva

Fotografía

Gerente de Investigación y Desarrollo
David L. Urián Cruz

Coordinador de Sistemas de Información Geográfica
Leonardo López Ruiz

CTS-México
IMPLAN/Culiacán
NASA-USRA

Gerente de Comunicación

Director de Desarrollo e Implementación
Dario Hidalgo

Coordinación de Análisis Económico Ambiental
Suyal Cortés Bernusta
Coordinador de Ingeniería y Economía Ambiental

Rhys Tom
Director de Información e Innovación

Gerente Administrativo
Gustavo Zacarías Martín

Coordinación de Análisis Espacial y Cartografía
Lisetta Carlos Carrillo
Analista de Política Pública

Comité Interno de Revisión
Cambio Climático y Calidad del Aire
Hilda Martínez Salgado
Gabriela Niño
Investigación y Desarrollo
David L. Urián Cruz
Amílcar López Zapata
Ricardo Fernández Gómez
Planeación de Sistemas de Transporte
Sebastián Varela Contador
Comunicación
Salvador Milla Jiménez

Director Ejecutivo Adjunto
Salvador Herrera Montas

Coordinación de Análisis en Política Pública y Desarrollo Urbano
Alejandra Rangel Smith
Gerente de Movilidad y Desarrollo Urbano

Gerente de Proyecto
Adriana de Almeida Lobo
Directora Ejecutiva
Hacia Ciudades Competitivas
Bajas en Carbono

México D.F.
Febrero, 2011

Comité Científico
Nancy Kate
Ex Directora EMBARQ
Robert Cervero
Universidad de California, Berkeley (UC, Berkeley)
Christopher Zegras
Instituto Tecnológico de Massachusetts (MIT)
Mauricio Estes
Universities Space Research Association (USRA)
Boris Graetzner
Colegio de México (COLMEX)
Clemencia Santos
Universidad Nacional Autónoma de México (UNAM)
Manuel Súñez
Universidad Nacional Autónoma de México (UNAM)

Agradecimientos a:
Embajada Británica en México
SEDESOL
Arq. Sara Topelso y Mtro. Luis Zamorano
INFONAVIT
C.P. Víctor Borrás, Ing. Víctor Pérez y Mtra. Paulina Campos
INE
Dr. Luis Córdova Álvarez y Dra. Karla Barclay
Global Green, USA
Ted Barden
Consultores
Emiliano Cruz León, Carlos A. Zárate López y Juan Manuel Gómez

Embajada Británica en México
Colónia Villa Coyocacán, CP 04000
Distrito Federal, México
+52 (55) 30 06 57 42, info@ctsmexico.org
www.ctsmexico.org

Esta es una investigación y publicación del Centro de Transporte Sustentable de México A.C. El estudio fue realizado con el financiamiento del Strategic Programme Fund, administrado por la Embajada Británica en México.

El contenido representa la visión del Centro de Transporte Sustentable de México y por ningún motivo compromete la postura de las entidades e instituciones que apoyan o fondean la publicación.

Prohibida la reproducción total o parcial de cualquier capítulo, fotografía o información publicada sin autorización expresa del Centro de Transporte Sustentable de México A.C., titular de todos los derechos.

ISBN 978-607-95477-6-9
Para el 2050 la población de México se habrá estabilizado en cerca de 45 millones de hogares duplicando la cifra de viviendas que existe hoy.

Reflexionar acerca de la forma en la que construimos comunidades nos abre la oportunidad de diseñar espacios urbanos que tienen como eje rector las personas y que atienden a los retos económicos de la actualidad.

Hacia Ciudades Competitivas Bajas en Carbono demuestra que hay un modelo de ciudad diferente para nuestro país: bajo en carbono y viable social y económicamente.
Contenido

02 Hacia Ciudades Competitivas Bajas en Carbono

05 \(C^2C^2 \): innovando en investigación y cambios a la realidad

06 Culiacán, Mérida y Aguascalientes: compromiso e iniciativa

09 Evaluando el desarrollo y la movilidad

16 Diagnóstico urbano

26 Nuestra propuesta

33 Rediseñando la movilidad
HACIA CIUDADES COMPETITIVAS BAJAS EN CARBONO

Las ciudades del mundo están tomando pasos agigantados preparándose para un futuro bajo en carbono: hay que lograr alternativas de desarrollo que permitan combatir el cambio climático, crear empleos y nuevas oportunidades económicas – todo al mismo tiempo. El desarrollo urbano y el transporte son esenciales para avanzar en este camino.

La reducción de emisiones de carbono entre el modelo actual mexicano y el modelo de desarrollo más denso y con usos mixtos es cercano al 20% durante la construcción. Adicionalmente, existen ahorros en emisiones por cambios en la distancia de los viajes entre los desarrollos de interés social y zonas con multiplicidad de usos de suelo; en el caso de Mérida alcanza el 17%.

Un modelo urbano con densificación equilibrada y usos del suelo mixtos permite la proximidad entre los lugares de residencia y los trabajos, escuelas y servicios. Con esto, se minimiza la necesidad de traslados y se favorecen los desplazamientos más cortos, con modos que generan bajas emisiones de carbono, como son la caminata, la bicicleta y el transporte público.

La experiencia práctica de los proyectos piloto de esta iniciativa muestra que el modelo bajo en carbono no necesariamente es más costoso y puede inclusive generar ahorros en los costos en urbanización y mantenimiento para los desarrolladores y para los municipios. Por ejemplo, en el fraccionamiento Centenario de la Revolución en Aguascalientes, se presupuestó una reducción de costos de 4% por urbanización.
Ejemplos prácticos de cambios a proyectos en ciudades mexicanas, así como propuestas de políticas públicas, permitirán identificar caminos para avanzar hacia Ciudades Competitivas Bajas en Carbono.

¿Este modelo de Ciudad Competitiva Baja en Carbono se puede lograr en el contexto mexicano?

Diseñando a escala humana, pensando en las personas para crear comunidades activas y vibrantes. Desarrollando la infraestructura, la accesibilidad y la seguridad para bicicletas y peatones y servicios de transporte público de calidad. Promoviendo los usos mixtos, con la creación de zonas de comercios y servicios cercanas a las viviendas. Reduciendo la distancia entre los nuevos fraccionamientos y la ciudad existente.
A partir de $^{14}C^{2+}C_2$, se constituyó una red de socios estratégicos conformada por la Secretaría de Desarrollo Social (SEDESOL), el Instituto del Fondo Nacional de la Vivienda para los Trabajadores (INFONAVIT), la Universities Space Research Association (USRA) y los gobiernos municipales de Aguascalientes, Culiacán y Mérida.
Hacia Ciudades Competitivas Bajas en Carbono (C²C²)

C²C²: INNOVANDO EN INVESTIGACIÓN Y CAMBIOS A LA REALIDAD

C²C² es una iniciativa con dos grandes componentes:

EVALUANDO EL DESARROLLO Y LA MOVILIDAD:

Cálculo de las emisiones de carbono y de los costos económicos para el modelo de fraccionamiento tradicional y el competitivo. Análisis comparativo y generación de propuestas de políticas públicas a partir de los hallazgos.

REDISEÑANDO LA MOVILIDAD:

Aplicación práctica de los criterios utilizados para la construcción del modelo competitivo en proyectos de desarrollo habitacional en ciudades mexicanas.
CULIACÁN, MÉRIDA Y AGUASCALIENTES: COMPROMISO E INICIATIVA

Culiacán, Mérida y Aguascalientes son ciudades visionarias que se involucraron en el reto de analizar su situación actual y avanzar en la transformación hacia ciudades competitivas bajas en carbono.

Los Presidentes Municipales de estas ciudades manifestaron por escrito su compromiso de participar en la iniciativa, involucrando a sus secretarías y institutos municipales de planeación y vivienda.

Los funcionarios municipales participaron con gran energía y entusiasmo en la etapa de recopilación de información, en su análisis y revisión. A partir de los hallazgos se realizaron algunos cambios en políticas públicas y en proyectos de vivienda y movilidad de estos municipios.
Cada año se registran cerca de 4 millones de accidentes viales con costo equivalente al 1.2% del PIB (Imesevi, 2010).

De acuerdo a la OCDE, en México 30% de la población padece de obesidad y 70% sufre de sobrepeso.

La presencia de dióxido de azufre en el combustible que consumen los automóviles es responsable del 75% de la contaminación del aire (INE, 2009) lo cual tiene efectos en el desarrollo de los embriones, impactos sobre el sistema cardiovascular y el incremento en el riesgo de cáncer pulmonar, con una mayor incidencia en la población con menores ingresos.
EVALUANDO EL DESARROLLO Y LA MOVILIDAD

El modelo de crecimiento que impera en las ciudades mexicanas está constituido actualmente por numerosos desarrollos inmobiliarios homogéneos, con zonas centrales densas pero en proceso de abandono, y zonas periféricas desvinculadas del resto de la ciudad. Bajo este modelo de planeación, los espacios públicos como parques y plazas han venido perdiendo protagonismo. Este nuevo esquema prioriza la inversión en obras que fomentan excesivamente el uso del automóvil, la vida sedentaria, los desarrollos habitacionales cerrados, la segregación de los usos del suelo, y el desequilibrio entre la oferta y demanda de servicios entre comunidades.

Según una encuesta de satisfacción residencial, el 24.6% de las viviendas están deshabitadas y la inadecuada ubicación de los fraccionamientos es uno de las causas señaladas por los derechohabientes.

(SHF, 2010)

La ubicación de los nuevos fraccionamientos en la periferia provoca viajes cada vez más largos, fomenta el uso del automóvil, socava la importancia de los sistemas de transporte público, incrementa las emisiones de carbono, desaparece zonas de preservación ecológica y causa mayores costos económicos para los gobiernos locales.
Modelo actual:
Fraccionamiento Valle de los Cactus, Aguascalientes.
La evaluación de las emisiones y costos comparativos entre el modelo actual y el modelo competitivo se hizo a través de una metodología desarrollada por el equipo de CTS-México con la participación de un Comité Científico conformado por reconocidos expertos mexicanos e internacionales.

MODELO ACTUAL: Para cada una de las ciudades involucradas, se analizó con detalle la regulación, la información y los planos de fraccionamientos construidos en los últimos 10 años, desarrollando una plantilla representativa para cada ciudad. La plantilla agrupa alrededor de 5,000 viviendas e incorpora el equipamiento y la infraestructura requerida.

MODELO COMPETITIVO: La construcción de la plantilla competitiva partió de la aplicación de los 10 principios de Crecimiento Inteligente y de Desarrollo Orientado al Transporte Sustentable (DOTS) a la plantilla actual, respetando la normatividad local, el número de viviendas, y los requerimientos de equipamiento e infraestructura.

Los análisis se realizaron para 3 diferentes niveles: Vivienda, Plantilla y Ciudad.
Modelo tradicional

El total de la vivienda en el modelo tradicional es unifamiliar.

- **Densidad**: 104 hab/ha (área total)
- **Usos Mixtos**: Menos de 5% comercio y servicios (área vendible)
- **Calles dedicadas al automóvil**: solo 25% se dedica al peatón, no se contempla al ciclista
- **Conexión a transporte masivo**: Solo una parada al acceso del fraccionamiento.
- **Solo un tipo de vivienda**: Lote tipo = 90 m²
- **Áreas Verdes**: 2.8 m² de áreas verdes por persona
Modelo competitivo

Los desplazamientos hacia equipamientos, servicios, comercios y transporte público cubren un radio cercano a 300 metros para que la población pueda satisfacer sus necesidades.

Alta densidad = 280 hab/ha (área total)

Usos Mixtos:
- 20% comercio y servicios (área vendible)

Calles completas = 50% de la vía para peatones y ciclistas

Conexión a transporte masivo:
- Paraderos a no más de 300 mts.

Vivienda con diversidad de ingresos y tamaños:
- 3 tipos de lote = 60, 90 y 120 m²

Áreas Verdes = 5 m² de áreas verdes por persona

El modelo competitivo destina más del 50% de su espacio de vialidades al peatón y ciclista.
IMPACTOS DEL MODELO COMPETITIVO:

28% menos superficie requerida.

81% más áreas de donación, lo que representa más comercio, equipamiento y áreas verdes.

4.4 veces más oportunidades de empleo al interior del fraccionamiento.

Se duplican las áreas verdes por persona.

14% menos vialidad, pero el doble de área peatonal.

12% menos emisiones de carbono por construcción.

15% menos costos de construcción por m² de vivienda y comercio.
DIAGNÓSTICO URBANO
La vivienda es la célula básica del modelo de desarrollo urbano del país. A partir de la utilización del suelo, el aprovechamiento de cada lote y sus características de diseño y construcción, se define también la naturaleza de los fraccionamientos y con ello el carácter de las ciudades.

Invertir en eco-tecnologías genera impacto a escala. La incorporación de eco-tecnologías puede reducir hasta un 34% las emisiones y hasta 42% los costos anuales por consumos energéticos en la vivienda.

Aumenta entre 5% y 12% el costo total de la vivienda, pero el incremento en el costo inicial genera en realidad un ahorro de hasta 5 veces el valor de esta inversión para el momento en que se termine de pagar el crédito hipotecario.

Cada vivienda de estos fraccionamientos genera entre 2.01 y 3.03 tCO₂e al año por el consumo de electricidad y gas LP. Para absorber las emisiones derivadas de su construcción y mantenimiento se requieren grandes superficies de áreas verdes, que van desde 54 hasta casi 200 veces el tamaño original del lote*

*El tamaño del lote promedio es de 90m² con una superficie promedio construida de 45m².

Entre las eco-tecnologías más recomendadas por CONAVI se encuentran focos ahorradores, materiales locales, ventilas y calentadores solares.
A NIVEL FRACCIONAMIENTO

La ubicación periférica de los fraccionamientos de interés social, sus limitadas opciones de movilidad y la priorización de vialidades, inducen al uso del automóvil. Esto genera altas emisiones y costos que impactan directamente el presupuesto de la ciudad.

Las unidades habitacionales son la gran oportunidad para potenciar viajes cortos, promover diversos modos de transporte, espacios para la convivencia, el encuentro y el comercio. Son la oportunidad para la construcción de comunidad.

Modelos altos en carbono. Los fraccionamientos emiten cerca de 176 mil tCO₂e. Para mitigar este impacto se requeriría plantar alrededor de 460 mil árboles.

El fraccionamiento actual es un modelo generador de altos costos públicos. El costo de construcción y mantenimiento de cada uno de estos fraccionamientos es aproximadamente de 1300 millones de pesos anuales lo cual equivale al total del presupuesto de obras públicas de una ciudad mediana en México.

Entre el 42% y 51% de los costos del fraccionamiento recaen directamente sobre el presupuesto municipal.
El uso del automóvil es predominante en el sector de interés social, lo cual denota la paradoja de la alta motorización en un sector de bajos ingresos: 35% de los viajes en estos fraccionamientos se realizan en automóvil.

En las zonas de interés social se duplica el número de viajes en automóvil por persona comparado con zonas populares consolidadas de la ciudad.

Más vías y menos vida pública. Los fraccionamientos de interés social destinan entre el 24-33% de su suelo a vialidades mientras sólo el 13% en promedio de su superficie es dedicada a las áreas verdes.

Los habitantes de las zonas populares consolidadas tienen ingresos similares a las zonas de interés social, pero patrones de viaje más sustentables: viajan mayores distancias en transporte público y tienen las distancias más altas a pie y en bicicleta.
La dignidad de la vivienda no se define solo a partir de sus atributos de diseño sino también se concrete en la calidad del entorno.
Las ciudades mexicanas están perdiendo población en sus centros urbanos para favorecer las periferias, consumiendo grandes cantidades de recursos incluyendo suelo e infraestructura.

Las ciudades densas y compactas dinamizan la vida urbana: generan menores distancias entre el trabajo y la residencia, disminuyen los costos de viaje, promueven las opciones de movilidad sustentable y reducen las emisiones.

El crecimiento del territorio de la ciudad supera el crecimiento poblacional.

En Culiacán la tasa de crecimiento espacial es 3.5 veces mayor que su tasa de crecimiento poblacional (1990-2009).

Culiacán muestra una muy baja densidad de 25hab/ha en las zonas de expansión urbana.

17% de la superficie total de Aguascalientes corresponde a lotes baldíos.

En el 2005 se contabilizaban en Mérida 15 mil 627 viviendas en el centro de las cuales solo el 30% se encuentran ocupadas.

Usos de Suelo Urbano
- Uso Mixto
- Industrial
- Areas Verdes
- Río
- Media Alta
- Popular
- Interes Social

Imagen satelital NASA. Culiacán, Sinaloa 2009
Los fraccionamientos de interés social se construyen con el 15% más de vialidades que las zonas con ingresos económicos más altos debido a los criterios de normatividad local.

Los fraccionamientos de interés social dedican mayor espacio a las vialidades (25%-35%) con respecto a las zonas de usos mixtos (12%-18%) o de interés medio-alto (18-31%).

Los patrones de movilidad de interés social son costosos.

En el período de un año, el costo del transporte para las familias que habitan en zonas de interés social supera hasta en un 44% el gasto en electricidad y gas LP.

La densidad poblacional disminuye la longitud y la duración promedio de los viajes.

La cantidad de viajes diarios se relaciona más con características económicas mientras que la longitud y duración del viaje depende más de cuestiones de ubicación y diversidad de usos de suelo.

Existe un gran potencial para promover la movilidad no motorizada en las ciudades intermedias en México, pues el promedio de kilómetros recorridos en las ciudades estudiadas está entre 1.80 y 2.03 Km/viaje/día.

El modelo competitivo aumenta la densidad promedio en un 26%, reduciendo el 5% de los viajes por persona y 3% el tiempo de viaje ya que la distancia es 2.5% menor.
La incongruencia en la repartición de infraestructura y equipamiento entre zonas dentro de una misma ciudad provoca viajes cada vez más largos, costosos y tardados, impactando a la productividad local.
Nuestra Propuesta

Ante los múltiples problemas de las ciudades, urgen acciones que trasciendan la inmediatez.

La crisis urbana que presenciamos exige la acción pública y el diálogo entre los diferentes niveles de gobierno, sectores y tomadores de decisión. La sinergia entre desarrollo urbano y la planeación del transporte es la base para construir una visión de ciudad de largo plazo.

Esta propuesta brinda las estrategias y los instrumentos para fomentar patrones de movilidad y desarrollo urbano más sustentables que resultan en un mejor aprovechamiento de la inversión pública, crecimiento de la economía local y mejora de la calidad de vida.
Consolidar un esquema de planeación conjunta entre transporte y vivienda:

Fomentar otros medios de transporte, fundamentalmente los no motorizados, de forma cómoda y segura.

Recuperar la cercanía como valor urbano y con ello diversificar los usos de suelo para aproximar los servicios más comunes a la vivienda por medios no motorizados.

Promover diseños urbanos incluyentes en los que cada medio de transporte (peatonal, ciclista, transporte público y transporte privado) sea considerado.

Actualizar la reglamentación urbana para incorporar:

Espacio público Estructura urbana multifuncional Estructura urbana compacta Movilidad sustentable Participación ciudadana

ACCIONES INMEDIATAS:
Considerar la ubicación de las áreas de donación al interior de los fraccionamientos para que la infraestructura y el equipamiento social que allí se edifique sea de mayor utilidad a la comunidad.

Introducir el concepto de corredores verdes que asocien espacios al interior de la ciudad con los espacios naturales ubicados en la periferia con el fin de proteger los recursos forestales, recuperar los mantos freáticos, reducir la contaminación y desacelerar la expansión urbana.

Estudiar la creación de instrumentos financieros para equilibrar las cargas y beneficios del desarrollo urbano.

Garantizar la integración de los diferentes grupos sociales mediante la realización de talleres participativos y jornadas informativas.
Espacio Público
Los espacios públicos aumentan la plusvalía de los terrenos por lo que ayudan a ordenar el crecimiento mediante la localización de proyectos nuevos en los lugares más rentables.

Estructura compacta
Una ciudad compacta mejora la productividad local ya que acerca los destinos; una mayor densidad facilita los viajes en medios no motorizados, recupera los centros históricos y permite el aprovechamiento de áreas que hoy día cuentan con la infraestructura necesaria para atender a población y que no obstante se encuentran abandonadas.

Estructura Urbana Multifuncional
El éxito radica en la combinación de los usos de suelo compatibles como vivienda, comercio local, centros de empleo, actividades cívicas y de entretenimiento, ubicados a distancias cercanas entre 1km y 1.5km o integrados en una misma edificación.
Movilidad Sustentable

La infraestructura vial se agota casi tan rápido como se construye; es decir, cuando se construyen nuevas vías, la gente transita cada vez más en ellas saturándolas inevitablemente. Por lo tanto, se hace necesario implantar un nuevo enfoque en la planificación del transporte con el fin de sincronizar los usos del suelo, crear multiplicidad de opciones en transporte, y fomentar la conexión en sus redes con la infraestructura peatonal y ciclista.

Participación ciudadana

La participación ciudadana desarrolla la toma de decisión responsable donde la población puede hacer valiosas aportaciones en los procesos de planificación y ejecución basándose en su conocimiento detallado y a profundidad de las condiciones, necesidades y deseos locales.
Las nuevas áreas a urbanizar deben crearse con mayor densidad.

Promover la creación de fideicomisos para habilitar el uso de baldíos y apoyar proyectos de redensificación.

Colaborar con los distintos niveles de gobierno para implementar a nivel local proyectos piloto que rompan el paradigma de la construcción tradicional.

La diversidad en los usos del suelo debe fomentarse.

Crear redes peatonales y ciclistas para conectar las zonas residenciales, los lugares de empleo y el transporte público.

Priorizar los lugares en detrimento o baldíos al interior de la ciudad para la construcción de nuevos proyectos habitacionales y comerciales.

Promover el uso de las eco-tecnologías en el diseño de los desarrollos.

Fomentar edificaciones con superficies verdes que se integren a la imagen de la ciudad con el fin de aumentar la eficiencia energética y el atractivo general de los edificios.

Considerar desde la etapa de diseño sistemas de captación de aguas pluviales, reuso de aguas grises o la inclusión de consideraciones bioclimáticas (como ubicación de ventanas y sombras), esto disminuye la necesidad de infraestructura pública como agua, drenaje y sistemas de calefacción y aire acondicionado.
Orientar el mercado de la vivienda para que su tipología no sea rígida.

Aprovechar la infraestructura y equipamiento existente para la implementación de proyectos de alta densidad, conectividad y diversidad que sirvan también para albergar usos de suelo complementarios.

Promover con el municipio la elaboración de guías de diseño de fraccionamientos para equilibrar las características de la edificación con criterios de movilidad sustentable.

Promover una urbanización de bajo impacto ambiental a través de las áreas verdes.

Incorporar anillos verdes periféricos y al interior de la ciudad, formados por conjuntos de parques y zonas de gran valor paisajístico

Incluir en las construcciones valores mínimos de suelo permeable
El desarrollo extensivo, horizontal y desordenado del suelo y el carácter periférico de la vivienda produce graves déficits de equipamiento e infraestructura básica en los que se incluye el transporte.
RE Diseñando la movilidad
Centenario de la Revolución, Aguascalientes

El fraccionamiento *Centenario de la Revolución* es un desarrollo de interés social que busca satisfacer la demanda de vivienda económica de Aguascalientes. Está situado en el sur de la ciudad y contará con 9,013 viviendas de entre 45 y 60 metros cuadrados.

El fraccionamiento es pionero en vivienda de interés social en México ya que incorpora eco-tecnologías, vivienda de alta calidad y sistemas de captación de agua pluvial.
Durante la semana del 15 al 19 de febrero del año 2010 se llevó a cabo, en la ciudad de Aguascalientes, el taller *Rediseñando la Movilidad* cuyo propósito era explorar y descubrir oportunidades para mejorar aspectos de movilidad sustentable del fraccionamiento *Centenario de la Revolución*.

Se desarrollaron dinámicas participativas para integrar las visiones de constructores, gobierno local y federal, expertos nacionales e internacionales, y el CTS México en un diseño que incorpora mejoras en transporte público, movilidad no motorizada, espacios públicos y usos de suelo.
CAMBIOS EN EL DISEÑO:

Mayor integración social y más sentido de pertenencia de sus habitantes:

A través del diseño se aumentó más de 400% la probabilidad de interacción social en el fraccionamiento a través de cuatro centros barriales y una vialidad únicamente peatonal y ciclista de 1.5 km.

Cero muertes por accidentes de tránsito

Se redujeron conflictos viales entre peatones, ciclistas, automovilistas y transporte público en 4 intersecciones mayores y entre ciclistas y automovilistas en 68 intersecciones menores.

Se redujo en aproximadamente 34% la velocidad de las calles.

Mayor actividad física

Se aumentó la infraestructura ciclista en un 20% y se amplió el tamaño de las banquetas en el 70% del fraccionamiento.

Menores costos económicos

Se redujo el 50% de los bolardos en 19 calles y el 25% de las intersecciones en dos macro-lotes de vivienda. Con ello, se redujeron los gastos por superficies pavimentadas.
Según estimaciones del Instituto de Vivienda de Aguascalientes, la aplicación del nuevo modelo de diseño sustentable contribuiría a:

Reducir los índices de crecimiento del parque vehicular hasta en un 10% anual.

Sentar precedente para una nueva normatividad con base en los criterios aplicados.

Centenario de la Revolución es el primer fraccionamiento en México en recibir una auditoría de seguridad vial en su etapa de diseño.

Centenario de la Revolución se convirtió en uno de los 10 éxitos principales del World Resources Institute (WRI) a nivel mundial en el 2010.
Valle de Encino y Cumbres del Sur, Culiacán

En el mes de agosto de 2010 se realizó en la ciudad de Culiacán el taller Rediseñando la Movilidad donde por primera vez un desarrollador privado participó en la incorporación de criterios sustentables al diseño de su fraccionamiento.

Valle de Encino tiene 10.7 hectáreas y contará con 416 viviendas unifamiliares y 288 multifamiliares, así como con 4 plazas comerciales.

Cumbres del Sur es un desarrollo de interés social con una superficie de 97 hectáreas. El proyecto cuenta con 4 mil 445 lotes para vivienda y 59 de comercio.

CAMBIOS EN EL DISEÑO:
Reducción de conflictos viales en 4 intersecciones mayores.
Incorporación de más de 5km de ciclovía en boulevard y calles colectoras.
Creación de calle tipo paseo peatonal de casi 500 metros.
Transformación de 2 km de calles exclusivas para automóviles a calles completas.
Comunidades conectadas: mayor calidad de vida

A través de estas experiencias, CTS México propone llevar a la práctica los principios del Desarrollo Orientado al Transporte Sustentable DOTS, los cuales se basan en:

Organizar el crecimiento urbano de modo que sea compacto y apoye el transporte masivo.

Alentar las políticas de redensificación y reurbanización a lo largo de corredores de tránsito.

Incluir vivienda, centros de empleo, parques y equipamiento a poca distancia de las paradas de transporte.

Preservar y aprovechar los espacios abiertos de alta calidad.

Crear redes de calles peatonales conectadas con los destinos locales.

Proporcionar una mezcla de tipos de viviendas, densidades y precios.

DOTS aprovecha la relación entre el diseño de ciudad y el transporte para generar beneficios económicos y mejorar la calidad de vida de los ciudadanos.
Sólo aquellas ciudades equipadas física e institucionalmente, con actores y organizaciones innovadoras, eficientes y con una visión de futuro compartida, tendrán la oportunidad de convertirse en ciudades capaces de generar desarrollo local para el beneficio de su comunidad y de las generaciones futuras.
Hacia Ciudades Competitivas Bajas en Carbono
¿QUIÉN ES CTS-MÉXICO?
El Centro de Transporte Sustentable de México, CTS-México, es una organización mexicana sin fines de lucro, guiada por un Consejo Directivo con prestigio internacional, que tiene la misión de catalizar soluciones de movilidad sustentable para mejorar la calidad de vida en las ciudades mexicanas.
El CTS-México pertenece a la red EMBARQ - Centro de Transporte Sustentable del World Resources Institute, que tiene también representación en Brasil, India, Turquía y los Andes.